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Problem Definition and Challenges

Goal: Stochastically generating natural 3D human motions from a given text description.

Motivations & Challenges:

* Previous works typically model this task as a deterministic one-to-one mapping problem.

* The lengths of motion for different or even the same text description may vary as well.

e Representing motions in form of individual poses can be redundant, which also adds on the
burdens for generating long sequences.

e Existing human motion-language dataset[1] 1s limited 1n both quantity and diversity.

Overview

Motion Snippet Code is firstly obtained as the latent sequence from a pre-trained 1-D con-
volutional motion autoencoder. This would shorten the sequence length by 4 times and leads
to a more compact and context-enriched motion representation.

Text2Length Sampling approximates the probability distribution of discrete motion snippet
length condition on text. This 1s learned via cross entropy classification loss. During infer-
ence, we would sample a value from the estimated multinomial distribution.

Text2Motion Generation aims to generate 3D human motions from the given text and sam-
pled motion length using temporal VAE as well as dedicated design of local word attention
and time-to-arrival signal.

Method
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DIR: left, right, forward, back, etc.

BOD: arm, chin, foot, hand, leg, etc.
OBJ: dumbbell, chair, ground, floor, etc|
\ ACT: walk, run, jump, sit, stand, etc. )
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(a) Motion Autoencoder

(b) Training Pipeline

Detailed structure of VAE networks:
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(b) Posterior Network Fg,
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(c) Inference Pipeline

Loss Function for Training Pipeline:
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HumanML3D Dataset

A novel large-scale and diverse 3D human motion language dataset:

e It consists of 14,616 motions and 44,970 textual descriptions composed by 5,371

distinct words.

e Each motion clip 1s described by 3 distinct sentences.

e Total and average duration: 28.59 hours and 7.1 seconds respectively.

e Average and median text length: 12 and 10 words respectively.

Experiments & Results

Qualitative Results:

A person sits down and crosses their legs, before getting up.
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Language2Pose

Generating Diverse and Natural 3D Human Motions from Text
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Code & Model

https://ericguo5513.github.io/text-to-motion/

A Comparison to Existing Dataset:

Dataset #Motions | #texts | Duration | Vocab.
HumanML3D 14,616 44970 | 28.59h 5,371
KIT-ML][1] 3911 6,278 10.33h 1,623

Person stretches arms out and makes arm circles
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Quantitative Results on HumanML3D Dataset:

Ablation Visualization:

A man is bent on the ground appears to be tying his shoe then

stands up and bring his right hand to his face.
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Human Evaluation:
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Quantitative Results on KIT-ML Dataset:
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