

Problem Definition and Challenges

Goal: Stochastically generating natural 3D human motions from a given text description. **Motivations & Challenges:**

- Previous works typically model this task as a deterministic one-to-one mapping problem.
- The lengths of motion for different or even the same text description may vary as well.
- Representing motions in form of individual poses can be redundant, which also adds on the burdens for generating long sequences.
- Existing human motion-language dataset[1] is limited in both quantity and diversity.

Overview

Motion Snippet Code is firstly obtained as the latent sequence from a pre-trained 1-D convolutional motion autoencoder. This would shorten the sequence length by 4 times and leads to a more compact and context-enriched motion representation. **Text2Length Sampling** approximates the probability distribution of discrete motion snippet length condition on text. This is learned via cross entropy classification loss. During inference, we would sample a value from the estimated multinomial distribution. **Text2Motion Generation** aims to generate 3D human motions from the given text and sampled motion length using temporal VAE as well as dedicated design of local word attention and time-to-arrival signal.

Method

Generating Diverse and Natural 3D Human Motions from Text

Chuan Guo Shihao Zou Xinxin Zuo Sen Wang Wei Ji Xingyu Li Li Cheng University of Alberta

 $\mathcal{L} = \mathcal{L}_{rec}^{code} + \lambda_{mot} \mathcal{L}_{rec}^{mot} + \lambda_{KL} \mathcal{L}_{KL}, \quad \text{with}$

(1)

$$\mathcal{T}(\mu_{\phi}(\mathrm{t}),\sigma_{\phi}(\mathrm{t}))\|\mathcal{N}(\mu_{\psi}(\mathrm{t}),\sigma_{\psi}(\mathrm{t}))\|$$

HumanML3D Dataset

A novel large-scale and diverse

- It consists of 14,616 motions distinct words.
- Each motion clip is described
- Total and average duration: 2
- Average and median text leng

Experiments & Results

Qualitative Results:

Quantitative Results on HumanML3D Dataset:

Methods	R Precision [↑]			FID	MultiModal Dist	Diversity_\	MultiMadality^		least pre
	Top 1	Top 2	Top 3	\cdot $1 D_{\downarrow}$		Diversity		10-	
Real motions	$0.511^{\pm.003}$	$0.703^{\pm.003}$	$0.797^{\pm.002}$	$0.002^{\pm.000}$	$2.974^{\pm.008}$	$9.503^{\pm.065}$	-	1.0	_
Seq2Seq[2]	$0.180^{\pm.002}$ 0.246 ^{±.002}	$0.300^{\pm.002}$ 0.387 $^{\pm.002}$	$0.396^{\pm.002}$ 0.486 $^{\pm.002}$	$11.75^{\pm.035}$ 11.02 $^{\pm.046}$	$5.529^{\pm.007}$ 5.206 $^{\pm.008}$	$6.223^{\pm.061} \ 7.676^{\pm.058}$	-		0.063
Text2Gesture[4] MoCoGAN[5]	$\begin{array}{c} 0.240\\ 0.165^{\pm.001}\\ 0.037^{\pm.000}\end{array}$	$0.267^{\pm.002} \ 0.072^{\pm.001}$	$\begin{array}{c} 0.430\\ 0.345^{\pm.002}\\ 0.106^{\pm.001}\end{array}$	$7.664^{\pm.030} \\ 94.41^{\pm.021}$	$6.030^{\pm.008} \\ 9.643^{\pm.006}$	$6.409^{\pm.071}$ $0.462^{\pm.008}$	$0.019^{\pm.000}$	0.8 -	0 175
Dance2Music[6]	$0.033^{\pm.000}$	$0.065^{\pm.001}$	$0.097^{\pm.001}$	$66.98^{\pm.016}$	$8.116^{\pm.006}$	$0.725^{\pm.011}$	$0.043^{\pm.001}$		0.135
Ours w/ real length Ours	$\frac{0.457^{\pm.002}}{0.455^{\pm.003}}$	$\frac{0.639^{\pm.003}}{0.636}^{\pm.003}$	$\frac{0.740^{\pm.003}}{0.736^{\pm.002}}$	$\frac{1.067^{\pm.002}}{1.087^{\pm.021}}$	$\frac{3.340^{\pm.008}}{\underline{3.347}^{\pm.008}}$	$\frac{9.188^{\pm.002}}{9.175^{\pm.083}}$	$\frac{2.090}{2.219}^{\pm.083}$		
								0.6 -	

Quantitative Results on KIT-ML Dataset:

Methods	Top 1	R Precision↑ Top 2	Top 3	FID↓	MultiModal Dist↓	Diversity \rightarrow	MultiModality↑	0.4 -		
Real motions	$0.424^{\pm.005}$	$0.649^{\pm.006}$	$0.779^{\pm.006}$	$0.031^{\pm.004}$	$2.788^{\pm.012}$	$11.08^{\pm.097}$	-			
Seq2Seq[2]	$0.103^{\pm.003}$	$0.178^{\pm.005}$	$0.241^{\pm.006}$	$24.86^{\pm.348}$	$7.960^{\pm.031}$	$6.744^{\pm.106}$	-	0.2		405
Language2Pose[3]	$0.221^{\pm.005}$	$0.373^{\pm.004}$	$0.483^{\pm.005}$	$6.545^{\pm.072}$	$5.147^{\pm.030}$	$9.073^{\pm.100}$	-	0.2	0.4	.405
Text2Gesture[4]	$0.156^{\pm.004}$	$0.255^{\pm.004}$	$0.338^{\pm.005}$	$12.12^{\pm.183}$	$6.964^{\pm.029}$	$9.334^{\pm.079}$	-			
MoCoGAN[5]	$0.022^{\pm.002}$	$0.042^{\pm.003}$	$0.063^{\pm.003}$	$82.69^{\pm.242}$	$10.47^{\pm.012}$	$3.091^{\pm.043}$	$0.250^{\pm.009}$			
Dance2Music[6]	$0.031^{\pm.002}$	$0.058^{\pm.002}$	$0.086^{\pm.003}$	$115.4^{\pm.240}$	$10.40^{\pm.016}$	$0.241^{\pm.004}$	$0.062^{\pm.002}$			
Ours w/ real length	$0.370^{\pm.005}$	$0.569^{\pm.007}$	$0.693^{\pm.007}$	$2.770^{\pm.109}$	$3.401^{\pm.008}$	$10.91^{\pm.119}$	$1.482^{\pm.065}$	0.0 -		
Ours	$0.361^{\pm.006}$	$0.559^{\pm.007}$	$0.681^{\pm.007}$	$3.022^{\pm.107}$	$3.488^{\pm.028}$	$10.72^{\pm.145}$	$2.052^{\pm.107}$		nce	esw

Ablation Analysis:

Methods	Top 1	R Precision↑ Top 2	Top 3	FID↓	[1] I [2] I
Ours	$0.455^{\pm.003}$	$0.636^{\pm.003}$	$0.736^{\pm.002}$	$1.087^{\pm.021}$	[3] A
Snippet Code W/O SnC Local Attention W/O Att Part-of-Speech W/O PoS Time-to-Arriva W/O PoE	$\begin{array}{c} 0.370^{\pm.002} \\ 0.396^{\pm.002} \\ 0.443^{\pm.003} \\ 0.444^{\pm.005} \end{array}$	$0.538^{\pm.003}\ 0.570^{\pm.002}\ 0.622^{\pm.003}\ 0.627^{\pm.003}$	$0.642^{\pm.003}$ $0.674^{\pm.003}$ $0.723^{\pm.003}$ $0.729^{\pm.002}$	$\begin{array}{c} 1.200^{\pm.027} \\ 1.833^{\pm.032} \\ 1.157^{\pm.016} \\ 1.229^{\pm.020} \end{array}$	[4] H V [5] 7 [6] I

e 3D human motion language dataset: s and 44.970 textual descriptions composed by 5.371	A Comparison to Existing Dataset:						
	Dataset	#Motions	#texts	Duration	Vocab.		
d by 3 distinct sentences.	HumanML3D	14,616	44,970	28.59h	5,371		
28.59 hours and 7.1 seconds respectively.	KIT-ML[1]	3,911	6,278	10.33h	1,623		
gth: 12 and 10 words respectively.			1	1	1		

Human Evaluation:

References:

- Plappert, Matthias, et al. "The KIT motion-language dataset." Big data 4.4 (2016): 236-252. (2018): 1
- Ahuja, Chaitanya, et al. "Language2pose: Natural language grounded pose forecasting." (3DV). IEEE, 2019.
- Virtual Agents." (VR), IEEE, 2021.
- Lee, Hsin-Ying, et al. "Dancing to music." Advances in Neural Information Processing Systems 32 (2019).

Code & Model https://ericguo5513.github.io/text-to-

Ablation Visualization:

erred most preferred

Lin, Angela S., et al. "Generating animated videos of human activities from natural language descriptions." Learning 2018

Bhattacharya, Uttaran, et al. "Text2Gestures: A Transformer-Based Network for Generating Emotive Body Gestures for

Fulyakov, Sergey, et al. "Mocogan: Decomposing motion and content for video generation." (CVPR), IEEE, 2018.